61 research outputs found

    Diagnostics of Various Phenomena in LV Devices Under Real Switching Conditions

    Get PDF
    The article deals with issues to be tackled when performing experiments with low voltage devices under real switching conditions and subsequently discusses various phenomena in an experimental device. The first part describes optimum setting of diagnostic equipment - mainly for optical diagnostic methods. The second part describes some phenomena encountered during switching process under real switching conditions - arc roots movement (cathode and anode spots). These phenomena are not only important for experimental study itself but also form necessary input data for numerical models and their validation

    Nanocrystalline diamond protects Zr cladding surface against oxygen and hydrogen uptake : Nuclear fuel durability enhancement

    Get PDF
    In this work, we demonstrate and describe an effective method of protecting zirconium fuel cladding against oxygen and hydrogen uptake at both accident and working temperatures in water-cooled nuclear reactor environments. Zr alloy samples were coated with nanocrystalline diamond (NCD) layers of different thicknesses, grown in a microwave plasma chemical vapor deposition apparatus. In addition to showing that such an NCD layer prevents the Zr alloy from directly interacting with water, we show that carbon released from the NCD film enters the underlying Zr material and changes its properties, such that uptake of oxygen and hydrogen is significantly decreased. After 100–170 days of exposure to hot water at 360 °C, the oxidation of the NCD-coated Zr plates was typically decreased by 40%. Protective NCD layers may prolong the lifetime of nuclear cladding and consequently enhance nuclear fuel burnup. NCD may also serve as a passive element for nuclear safety. NCD-coated ZIRLO claddings have been selected as a candidate for Accident Tolerant Fuel in commercially operated reactors in 2020

    A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants

    Get PDF
    Activated forms of jasmonic acid (JA) are central signals coordinating plant responses to stresses, yet tools to analyse their spatial and temporal distribution are lacking. Here we describe a JA perception biosensor termed Jas9-VENUS that allows the quantification of dynamic changes in JA distribution in response to stress with high spatiotemporal sensitivity. We show that Jas9-VENUS abundance is dependent on bioactive JA isoforms, the COI1 co-receptor, a functional Jas motif and proteasome activity. We demonstrate the utility of Jas9-VENUS to analyse responses to JA in planta at a cellular scale, both quantitatively and dynamically. This included using Jas9-VENUS to determine the cotyledon-to-root JA signal velocities on wounding, revealing two distinct phases of JA activity in the root. Our results demonstrate the value of developing quantitative sensors such as Jas9-VENUS to provide high-resolution spatiotemporal data about hormone distribution in response to plant abiotic and biotic stresses

    Arabidopsis R-SNARE Proteins VAMP721 and VAMP722 Are Required for Cell Plate Formation

    Get PDF
    Background: Cell plate formation during plant cytokinesis is facilitated by SNARE complex-mediated vesicle fusion at the cell-division plane. However, our knowledge regarding R-SNARE components of membrane fusion machinery for cell plate formation remains quite limited. Methodology/Principal Findings: We report the in vivo function of Arabidopsis VAMP721 and VAMP722, two closely sequence-related R-SNAREs, in cell plate formation. Double homozygous vamp721vamp722 mutant seedlings showed lethal dwarf phenotypes and were characterized by rudimentary roots, cotyledons and hypocotyls. Furthermore, cell wall stubs and incomplete cytokinesis were frequently observed in vamp721vamp722 seedlings. Confocal images revealed that green fluorescent protein-tagged VAMP721 and VAMP722 were preferentially localized to the expanding cell plates in dividing cells. Drug treatments and co-localization analyses demonstrated that punctuate organelles labeled with VAMP721 and VAMP722 represented early endosomes overlapped with VHA-a1-labeled TGN, which were distinct from Golgi stacks and prevacuolar compartments. In addition, protein traffic to the plasma membrane, but not to the vacuole, was severely disrupted in vamp721vamp722 seedlings by subcellular localization of marker proteins. Conclusion/Significance: These observations suggest that VAMP721 and VAMP722 are involved in secretory trafficking to the plasma membrane via TGN/early endosomal compartment, which contributes substantially to cell plate formatio

    FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture

    Full text link
    [EN] MADS-domain transcription factors are well known for their roles in plant development and regulate sets of downstream genes that have been uncovered by high-throughput analyses. A considerable number of these targets are predicted to function in hormone responses or responses to environmental stimuli, suggesting that there is a close link between developmental and environmental regulators of plant growth and development. Here, we show that the Arabidopsis MADS-domain factor FRUITFULL (FUL) executes several functions in addition to its noted role in fruit development. Among the direct targets of FUL, we identified SMALL AUXIN UPREGULATED RNA 10 (SAUR10), a growth regulator that is highly induced by a combination of auxin and brassinosteroids and in response to reduced R:FR light. Interestingly, we discovered that SAUR10 is repressed by FUL in stems and inflorescence branches. SAUR10 is specifically expressed at the abaxial side of these branches and this localized activity is influenced by hormones, light conditions and by FUL, which has an effect on branch angle. Furthermore, we identified a number of other genes involved in hormone pathways and light signalling as direct targets of FUL in the stem, demonstrating a connection between developmentally and environmentally regulated growth programs.We thank Arjo Meijering for assistance with the light measurements, Niek Stortenbeker for contributions to the manuscript, and Ueli Grossniklaus (University of Zurich) for financial and technical support. MB was supported by the Dutch Organization for Scientific research (NWO) in the framework of the ERA-NET on Plant Genomics (ERA-PG) program project CISCODE and by an NWO Veni-grant. In part, this work was performed in Ueli Grossniklaus' laboratory at the University of Zurich with support through an EMBO LT Fellowship to MB and a grant from the Swiss National Science Foundation to Ueli Grossniklaus. HM was supported by an NWO Vidi-grant, granted to KK.Bemer, M.; Van Mourik, H.; Muiño, JM.; Ferrandiz Maestre, C.; Kaufmann, K.; Angenent, G. (2017). FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. Journal of Experimental Botany. 68(13):3391-3403. https://doi.org/10.1093/jxb/erx184S33913403681

    Developmentally distinct activities of the exocyst enable rapid cell elongation and determine meristem size during primary root growth in Arabidopsis

    Get PDF

    Co/Fe/CoFe-SiO 2

    No full text
    • 

    corecore